REvision2021

Current Status and role of Offshore Wind in Japan

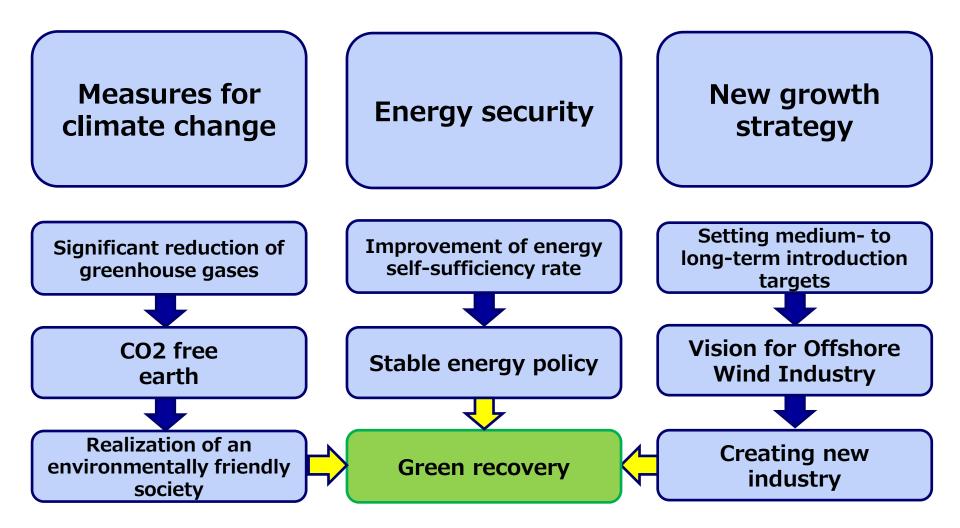
5th Strategic Energy Plan

Based on the 4th Strategic Energy Plan, Long-term Energy Supply and Demand Outlook energy Mix for 2030 was formulated in 2015. The energy mix has been followed in "5th Strategic Energy Plan" that was approved by the Cabinet in July 2018.

Energy Mix for 2030

[Total power generation]

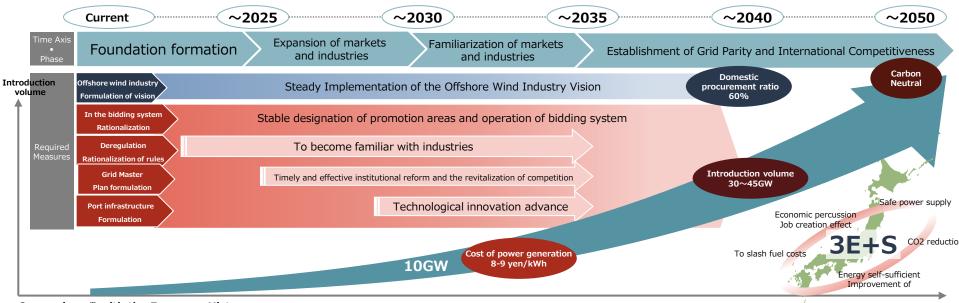
39.4~49.0

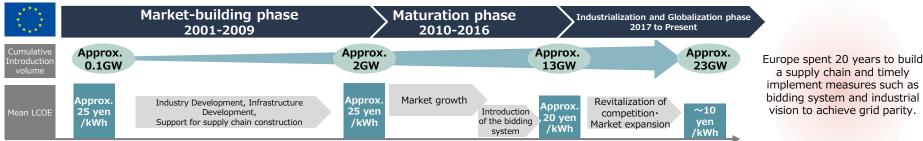

Biomass

	Renewable		Renewable		``````````````````````````````````````		Geothermal			Power ge	neration
	9%		16%		Renewable		1.0~1.1%			TWh	%
	Nuclear		Nuclear,3%		22~24%		Biomass 3.7~4.6%	7~4.6%	Oil	31.5	3%
	25%		Coal,32%		Nuclear 22~20%				Coal	281.0	26%
							Wind 1.7%		LNG	284.5	27%
	Coal ,28%						Solar		Nuclear Power	231.7~216.8	22~20%
			Oil 9%		Coal,26%		7.0%	Γ	Renewable	236.6~251.5	22%~24%
									Total	1,065.0	100%
	0il ,9%				Oil,3%		Hydro		Breakdov	able]	
			ING 40%		011/070		8.8~9.2%		LEncandor	Power genera	
										POWEI LIE	neration
	LNG,29%		LNG,40%		LNG, 27%						
	LNG,29%		LNG,40%		LNG, 27%				Solar	TWh 74.9	neration % 7.0%
	LNG,29% FY2010		LNG,40%		LNG, 27%				Solar Wind (Onshore)	TWh	%
E		E)							Wind	TWh 74.9	% 7.0%
E	FY2010 (BEFORE ARTHQUAKE Source : Com Subcommitte	nprehensi ee (28th N	FY2017 (PRESENT) ve Resource and l deeting Materials	• ·	FY2030 (FUTURE) udy Group Basic F				Wind (Onshore) Wind	TWh 74.9 16.1	% 7.0% 1.5%
E	FY2010 (BEFORE ARTHQUAKE Source : Com Subcommitte	nprehensi ee (28th N s after Fo	FY2017 (PRESENT) ve Resource and l deeting Materials rmulation of Basic	• ·	FY2030 (FUTURE) udy Group Basic F				Wind (Onshore) Wind (Offshore)	TWh 74.9 16.1 22.0	% 7.0% 1.5% 0.2%

2

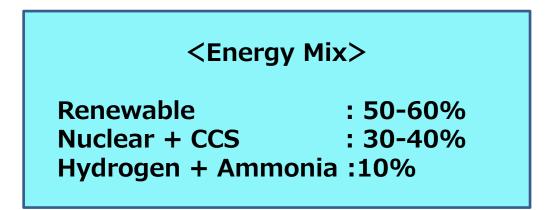
3.7~4.6%


Significance of expanding the introduction of offshore wind power



Path toward the transition to offshore wind power as a mainstay power source

- It is extremely important to implement necessary measures in an appropriate order and in a timely manner in
 order to achieve both cost reduction and domestic industry development, and to achieve the introduction targets.
- It aims to form the foundation of the industry in the next 10 years, foster domestic industries with international competitiveness early after 2030, and realize three targets (introduction amount, LCOE, and domestic procurement ratio).


Comparison * with the European History

※ Prepared based on JWPA Internal Survey Report

Discussion of the current situation towards 2050 Carbon Neutral

 Examination for realization of CN presented METI (December 21, 2020)

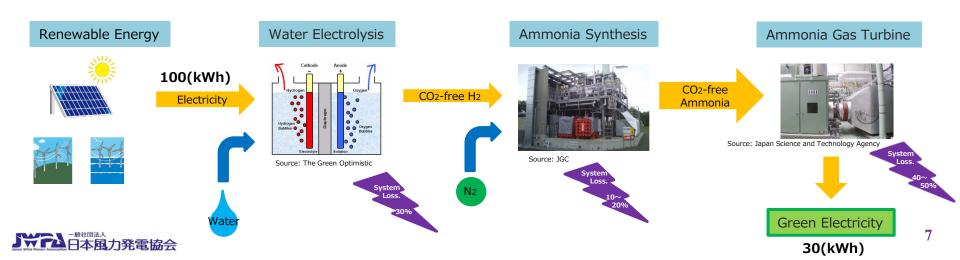
- CCS, Hydrogen, Ammonia: technologies that require innovation
- → Create scenarios based on established technology and create multiple scenarios including innovation in a well-balanced manner.

Six scenarios of Energy mix in 2050 presented by METI

This proposal was presented at an expert meeting of METI on January 27, 2021 as a "Study toward the Realization of 2050 Carbon Neutral," and it is said that RITE (Institute of Global Environmental Industrial Technology) will analyze the cost of each proposal and its impact on the economics in several scenarios.

Scenario⁽¹⁾ Scenario 1: Renewable energy 100% Scenario 2: When the renewable energy ratio is Scenario⁽²⁾ larger than the "reference values"* Scenario **3** : When the renewable energy ratio is Scenario⁽³⁾ smaller than the "reference values" * Scenario 4 : If the nuclear power ratio is maintained Scenario⁽⁴⁾ between 20% and 22% of the current energy mix Scenario 5: When emphasizing hydrogen/Ammonia Scenario⁽⁵⁾ Scenario⁽⁶⁾ Scenario 6: When emphasizing Fossil-fuel + CCUS * "reference values" were shown by the Ministry of Economics and Industries in December 2020 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% (Approxmately 50-60% Renewable energy, 10% hydrogen/ammonia, 30-40% for CCUS+fossil fuel +nuclear) Renewable Nuclear Fossil Fuel+CCUS Hydrogen/Anmonia

Six specific proposals for scenario analysis


Created based upon data from "Study for the implementation of carbon neutral in 2050" by the Agency for Natural Resources and Energy (January 27, 2021) 6

< Reference >

Hydrogen Roadmap

	Current situation	2030	Future vision(~2050)		
Hydrogen		300,000t/Year	5 to 10 million t/Year		
Amount	200t/Year (2017)	(Commercial supply chain scale)	(largely dependent on the amount consumed in power generation)		
procurcu		%Equivalent to about 1GW in power generation capacity	Equivalent to about 15 to 30GW in power generation capacity		
Supply Cost	\sim 100 yen/Nm3 (Station price)	30 yen/Nm3 (1/3 or less)	20 yen/Nm3 (1/5 or less)		
Power generation Cost	 (Technology Development Stage)	17 yen/kWh (Commercial Stage)	12 yen/kWh (substitute for gas-fired power generation)		

Green Ammonia

